Real-time Recommender Systems Made Easy with Neo4j

Date: 
Wednesday, August 16, 2017 - 18:30
Source: 
Graph Database Group
Attendees: 
75
City: 
London
Tags: 
Dev

Recommender system technology is the core of Netflix and Amazon's business model and has lead to a tremendous increase in sales and customer satisfaction.

Other retailers have seen sales increases of 5-15%, and now recommender systems are making their way to other industries to help customers find products faster, help salespeople find collateral and configure solutions, and help companies accelerate their product development by finding the right components to make products that meet market needs.


Real-time recommender systems are one of the sweetspot use cases for native graph databases.

Key goals for a good recommender system include relevance, novelty, serendipity and recommendation differentiation. In this talk, Pieter will demonstrate how you can have full and accurate control of the recommender system with Neo4j, interactive response at scale, and "on the fly" tuning for a fast time to market.

The Speaker
Pieter Cailliau, Neo4j Sr. Software Consultant

Pieter is part of Neo Technology’s Field Engineering team based in London. He holds a MSc in Computer Science from Ghent University, where he wrote a distinguished thesis on time-based graph models. Prior to joining Neo Technology, Pieter was an instanceof Software Engineer at TomTom, the world’s leader in location and navigation software, where he introduced neo4j to enable real-time impact analysis on their map. 


You'll need to fill in your full name when registering so we can give it to building security to get you access to the building. 

Neo4j UK

8th Floor, Friars Bridge Court, 41-45 Blackfriars Rd, SE1 8NZ